A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN]
نویسندگان
چکیده
Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESSRESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.
منابع مشابه
A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice.
Mitogen-activated protein kinase (MAPK) cascades have been identified in various signaling pathways involved in plant development and stress responses. We identified a drought-hypersensitive mutant (drought-hypersensitive mutant1 [dsm1]) of a putative MAPK kinase kinase (MAPKKK) gene in rice (Oryza sativa). Two allelic dsm1 mutants were more sensitive than wild-type plants to drought stress at ...
متن کاملA stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice
Adverse environmental conditions such as high temperature and drought stress greatly limit the growth and production of crops worldwide. Several NAC (NAM, ATAF1/2, and CUC2) proteins have been documented as important regulators in stress responses, but the molecular mechanisms are largely unknown. Here, a stress-responsive NAC gene, SNAC3 (ONAC003, LOC_Os01g09550), conferring drought and heat t...
متن کاملOverexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content
AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1) is a member of the basic domain leucine zipper (bZIP)-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA), dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAR...
متن کاملOverexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance
Harpin proteins are well known as eliciters that induce multiple responses in plants, such as systemic acquired resistance, hypersensitive response, enhancement of growth, resistance to the green peach aphid, and tolerance to drought. Overexpression of Harpin-encoding genes enhances plant resistance to diseases in tobacco, rice, rape, and cotton; however, it is not yet known whether the express...
متن کاملTranscriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing.
Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ER...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014